限流的实现算法有很多,但常见的限流算法有三种:计数器算法、漏桶算法和令牌桶算法。

1.计数器算法

计数器算法是在一定的时间间隔里,记录请求次数,当请求次数超过该时间限制时,就把计数器清零,然后重新计算。当请求次数超过间隔内的最大次数时,拒绝访问。

计数器算法的实现比较简单,但存在“突刺现象”。

突刺现象是指,比如限流 QPS(每秒查询率)为 100,算法的实现思路就是从第一个请求进来开始计时,在接下来的 1 秒内,每来一个请求,就把计数加 1,如果累加的数字达到了 100,后续的请求就会被全部拒绝。等到 1 秒结束后,把计数恢复成 0,重新开始计数。如果在单位时间 1 秒内的前 10 毫秒处理了 100 个请求,那么后面的 990 毫秒会请求拒绝所有的请求,我们把这种现象称为“突刺现象”。

计数器算法的简单实现代码如下:

import java.util.Calendar;
import java.util.Date;
import java.util.Random;

public class CounterLimit {
    // 记录上次统计时间
    static Date lastDate = new Date();
    // 初始化值
    static int counter = 0;
    // 限流方法
    static boolean countLimit() {
        // 获取当前时间
        Date now = new Date();
        Calendar calendar = Calendar.getInstance();
        calendar.setTime(now);
        // 当前分
        int minute = calendar.get(Calendar.MINUTE);
        calendar.setTime(lastDate);
        int lastMinute = calendar.get(Calendar.MINUTE);
        if (minute != lastMinute) {
            lastDate = now;
            counter = 0;
        }
        ++counter;
        return counter >= 100; // 判断计数器是否大于每分钟限定的值。
    }
 
    // 测试方法
    public static void main(String[] args) {
        for (; ; ) {
            // 模拟一秒
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            Random random = new Random();
            int i = random.nextInt(3);
            // 模拟1秒内请求1次
            if (i == 1) {
                if (countLimit()) {
                    System.out.println("限流了" + counter);
 
                } else {
                    System.out.println("没限流" + counter);
                }
            } else if (i == 2) { // 模拟1秒内请求2次
                for (int j = 0; j < 2; j++) {
                    if (countLimit()) {
                        System.out.println("限流了" + counter);
                    } else {
                        System.out.println("没限流" + counter);
                    }
                }
            } else { // 模拟1秒内请求10次
                for (int j = 0; j < 10; j++) {
                    if (countLimit()) {
                        System.out.println("限流了" + counter);
                    } else {
                        System.out.println("没限流" + counter);
                    }
                }
            }
        }
    }
}

2.漏桶算法

漏桶算法的实现思路是,有一个固定容量的漏桶,水流(请求)可以按照任意速率先进入到漏桶里,但漏桶总是以固定的速率匀速流出,当流入量过大的时候(超过桶的容量),则多余水流(请求)直接溢出。如下图所示:

漏桶算法提供了一种机制,通过它可以让突发流量被整形,以便为系统提供稳定的请求,比如 Sentinel 中流量整形(匀速排队功能)就是此算法实现的,如下图所示:

image.png

更多 Sentinel 内容详见:https://mp.weixin.qq.com/s/nF5f18BP8hscqIEmIFRN8Qopen in new window

3.令牌桶算法

令牌按固定的速率被放入令牌桶中,桶中最多存放 N 个令牌(Token),当桶装满时,新添加的令牌被丢弃或拒绝。当请求到达时,将从桶中删除 1 个令牌。令牌桶中的令牌不仅可以被移除,还可以往里添加,所以为了保证接口随时有数据通过,必须不停地往桶里加令牌。由此可见,往桶里加令牌的速度就决定了数据通过接口的速度。我们通过控制往令牌桶里加令牌的速度从而控制接口的流量。 令牌桶的实现原理如下图所示:

4.漏桶算法 VS 令牌桶算法

漏桶算法是按照常量固定速率流出请求的,流入请求速率任意,当流入的请求数累积到漏桶容量时,新流入的请求被拒绝。令牌桶算法是按照固定速率往桶中添加令牌的,请求是否被处理需要看桶中的令牌是否足够,当令牌数减为零时,拒绝新的请求。令牌桶算法允许突发请求,只要有令牌就可以处理,允许一定程度的突发流量。漏桶算法限制的是常量流出速率,从而使突发流入速率平滑。 比如服务器空闲时,理论上使用漏桶算法服务器可以直接处理一次洪峰(一次洪水过程的最大流量),但是漏桶算法处理请求的速率是恒定的,因此,前期服务器资源只能根据恒定的漏水速度逐步处理请求,无法直接处理这次洪峰。而使用令牌桶算法就不存在这个问题,因为它可以先把令牌桶一次性装满,处理一次洪峰之后再走限流。

小结

限流的常见算法有以下 3 种:

  1. 计数器算法:实现简单,但有突刺现象;
  2. 漏桶算法:固定速率处理请求,处理任意流量更加平滑,可以实现流量整形;
  3. 令牌桶算法:通过控制桶中的令牌实现限流,可以处理一定的突发流量,比如处理一次洪峰。

参考 & 鸣谢

《分布式微服务架构》

https://blog.csdn.net/chengqiuming/article/details/122385943

特殊说明

以上内容来自我的《Java 面试突击训练营》,这门课程是有着十几年工作经验(前 360 开发工程师),10 年面试官经验的我,花费 4 年时间打磨完成的一门视频面试课。学完训练营的课程之后,基本可以应对目前市面上绝大部分公司的面试了,并且课程配备了 9 大就业服务,帮助上千人找到 Java 工作,其中上百人拿到大厂 Offer,学员最高薪资 70W 年薪,面试课目录和 9 大服务如下:

加我微信咨询:vipStone【备注:训练营】